18BP076

INSTRUMENTAL METHODS OF ANALYSIS

Hours Per Week:

L	Т	Р	СР	CL	
3	1	4	2	4	

Total Hours:

L	Т	Р	WA/RA	SSH/HSH	8	SA	S	BS
45	1	60						

SCOPE:

This subject deals with the application of instrumental methods in qualitative and quantitative analysis of drugs. This subject is designed to impart a fundamental knowledge on the principles and instrumentation of spectroscopic and chromatographic technique. This also emphasizes on theoretical and practical knowledge on modern analytical instruments that are used for drug testing.

COURSE OUTCOMES:

Upon completion of the course, the student will be able to achieve the following outcomes:

COs	Course Outcomes	POs	PSOs
1	Understand the interaction of matter with electromagnetic radiations and its applications in drug analysis.	1,4	1 ,2
2	Understand the chromatographic separation and analysis of drugs.	1,	1,2
3	Perform quantitative & qualitative analysis of drugs using various analytical instruments.	1,	1,2

- 1. Understand the interaction of matter with electromagnetic radiations and its applications in drug analysis.
- 2. Understand the chromatographic separation and analysis of drugs.
- 3. Perform quantitative & qualitative analysis of drugs using various analytical instruments.

VFSTR 127

UNIT-I 10HOURS

UV VISIBLE SPECTROSCOPY: Electronic transitions, chromophores, auxochromes, spectral shifts, solvent effect on absorption spectra, Beer and Lambert's law, Derivation and deviations. Instrumentation - Sources of radiation, wavelength selectors, sample cells, detectors- Photo tube, Photomultiplier tube, Photo voltaic cell, Silicon Photodiode. Applications - Spectrophotometric titrations, Single component and multi component analysis.

FLUORIMETRY: Theory, Concepts of singlet, doublet and triplet electronic states, internal and external conversions, factors affecting fluorescence, quenching, instrumentation and applications.

UNIT – II 10HOURS

IR SPECTROSCOPY: Introduction, fundamental modes of vibrations in poly atomic molecules, sample handling, factors affecting vibrations. Instrumentation - Sources of radiation, wavelength selectors, detectors - Golay cell, Bolometer, Thermocouple, Thermister, Pyroelectric detector and applications.

FLAME PHOTOMETRY: Principle, interferences, instrumentation and applications.

ATOMIC ABSORPTION SPECTROSCOPY: Principle, interferences, instrumentation and applications **NEPHELOTURBIDOMETRY:** Principle, instrumentation and applications.

UNIT – III 10HOURS

INTRODUCTION TO CHROMATOGRAPHY: Adsorption and partition column chromatography-Methodology, advantages, disadvantages and applications.

THIN LAYER CHROMATOGRAPHY: Introduction, Principle, Methodology, Rf values, advantages, disadvantages and applications.

PAPER CHROMATOGRAPHY: Introduction, methodology, development techniques, advantages, disadvantages and applications.

ELECTROPHORESIS: Introduction, factors affecting electrophoretic mobility, Techniques of paper, gel, capillary electrophoresis, applications.

UNIT – IV 08HOURS

GAS CHROMATOGRAPHY: Introduction, theory, instrumentation, derivatization, temperature programming, advantages, disadvantages and applications.

HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (HPLC): Introduction, theory, instrumentation, advantages and applications.

UNIT – V 07HOURS

ION EXCHANGE CHROMATOGRAPHY: Introduction, classification, ion exchange resins, properties, mechanism of ion exchange process, factors affecting ion exchange, methodology and applications

GEL CHROMATOGRAPHY: Introduction, theory, instrumentation and applications.

AFFINITY CHROMATOGRAPHY: Introduction, theory, instrumentation and applications.

VFSTR 128