

ENGINEERING MATHEMATICS - II (F)

LINEAR ALGEBRA & ORDINARY DIFFERENTIAL EQUATIONS

Hours Per Week:

L	Т	Р	С
3	1	-	4

Total Hours:

L	Т	Р
45	15	-

Source: encryptedtbn0.gstatic.com

COURSE DESCRIPTION AND OBJECTIVES:

To provide students with solid foundation in Mathematical fundamentals such as matrices, ordinary differential equations, numerical methods required for engineering applications.

COURSE OUTCOMES:

Upon completion of the course, the student will be able to achieve the following outcomes:

COs	Course Outcomes
1	Evaluate the rank, eigenvalues and eigenvectors of a matrix and solution of a system of linear equations.
2	Appreciate the use of Cayley-Hamilton theorem.
3	Demonstrate the concept of analytical methods to solve differential equations.
4	Demonstrate the concept of numerical methods to solve differential equations.
5	Use software tools to obtain and verify the solutions.

SKILLS:

- ✓ Finding the rank of a matrix using various methods.
- ✓ Solve the system of linear equations with the appropriate methods.
- ✓ Compute Eigen values and Eigen vectors of a matrix.
- ✓ Solving a differential equation using suitable method.
- ✓ Compute numerical solutions of a differential equation by appropriate method.

VFSTR 23

ACTIVITIES:

- o Differentiate the methods to find the rank of a matrix.
- o Solving the system of linear equations and compare the results with solutions obtained using soft ware
- o Compute
 numerical
 solutions to
 differential
 equation and
 compare the
 results with
 solutions
 obtained using
 soft ware

UNIT- I L-9

MATRICES: Rank of a matrix, Normal form, Triangular form, Echelon form; Consistency of system of linear equations, Gauss-Jordan method, Gauss elimination method, Gauss-Siedal method.

UNIT-II L-9

EIGEN VALUES AND EIGEN VECTORS: Eigen values, Eigen vectors, Properties (without proofs); Cayley-Hamilton theorem (without proof), Power of a matrix, Diagonalisation of a matrix.

UNIT-III L-9

FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS: Basic definitions, Variables separable, homogeneous differential equations, Linear differential equations, Bernoulli's differential equations, Exact and non-exact differential equations.

UNIT- IV L-9

HIGHER ORDER ORDINARY DIFFERENTIAL EQUATIONS: Linear differential equations with constant coefficients, Homogeneous differential equations of second and higher order, Methods to find particular integral when RHS is of the form: e^{ax} , sin ax, cos ax and x^n .

UNIT-V L-9

NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS: Taylor series method, Picard's method, Euler's and modified Euler's method, Runge-Kutta method.

TEXT BOOKS:

- H. K. Dass and Er. Rajanish Verma, "Higher Engineering Mathematics", 3rd edition, S. Chand & Co., 2015.
- 2. B. S. Grewal, "Higher Engineering Mathematics", 44th edition, Khanna Publishers, 2018.

REFERENCE BOOKS:

- 1. John Bird, "Higher Engineering Mathematics", Routledge (Taylor & Francis Group), 2018.
- Srimanta Pal and Subodh C.Bhunia, "Engineering Mathematics", Oxford Publications, 2015.
- 3. B. V. Ramana, "Advanced Engineering Mathematics", TMH Publishers, 2008.
- 4. N. P. Bali and K. L. Sai Prasad, "A Textbook of Engineering Mathematics I, II, III", Universal Science Press, 2018.
- 5. T. K.V. Iyengar et al., "Engineering Mathematics, I, II, III", S. Chand & Co., 2018.

VFSTR 24