16PL301

PROCESS DYNAMICS & CONTROL

Hours Per Week:

L	Т	Р	С
3		3	4

Total Hours:

L	Т	Р	WA/RA	SSH/HSH	cs	SA	s	BS
45	-	30	25	48	-	5	5	5

Course Description and Objectives:

- 1. To understand and be able to describe quantitatively the dynamic behavior of process systems.
- 2. To learn the fundamental principles of control theory including different types of controllers and control strategies.
- 3. To estimate the stability limits for a system, with or without control.

Course Outcomes:

The student will be able to:

- 1. Describe a process, how it works and what the control objectives are.
- Describe a process, now it works and what the control
 Describe processes with appropriate block diagrams.
 Numerically model a process.
 Identify the stability limits of a system.

SKILLS:

- Apply the advance control strategies.
- Tune process controllers.
- ✓ To describe quantitatively the behavior of simple control systems and to design. control systems.
- To get exposure to advanced control strategies.
- To design and tune a control loop and to apply this knowledge in the industry/laboratory.

VFSTR UNIVERSITY 77

ACTIVITIES:

- To
 design
 different
 types of
 control
 valves.
- Design and operate control valves.

UNIT - 1 L-9

Introduction to process dynamics and control, Response of first order systems - Physical examples of first order systems.

Response of first order systems in series, higher order systems: Second order and transportation lag.

UNIT - 2 L-10

Control systems controllers and final control elements, Block diagram of a Petrochemical rector control system. Closed loop transfer functions, Transient response of simple control systems.

UNIT - 3 L-9

Stability Criterion, Routh Test, Root locus, Transient response from root locus, Application of root locus to control systems Introduction to frequency response, Control systems design by frequency response.

UNIT - 4 L-9

Advanced control strategies, Cascade control, Feed forward control, Ratio control, Smith predictor, Dead time compensation, Internal model control.

UNIT - 5

Controller tuning and process identification, Control valves.

List of Experiments:

- Calibration and determination of time lag of various first and second order instruments. Major equipment - First order instrument like Mercury-in-Glass thermometer and overall second order instrument like Mercury-in-Glass thermometer in a thermal well.
- 2. Experiments with single and two capacity systems with and without interaction.

Major equipment- Single tank system, Two-tank systems (Interacting and Non-Interacting).

- Level control trainer
 Major equipment Level control trainer set up with computer.
- Temperature control trainer
 Major equipment -Temperature control trainer with computer.
- Cascade control
 Major equipment -Cascade control apparatus with computer.
- Experiments on proportional, reset, rate mode of control etc. Major equipment – PID control apparatus
- Control valve characteristics
 Major equipment Control valve set up.
- 8. Estimation of damping coefficient for U-tube manometer Major equipment U-tube manometer.

VFSTR UNIVERSITY 7 8